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SYMBOLIC EXECUTION IN TEST DATA GENERATION
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Functional testing is a feasible solution for LSI/VLSI test generation

and design verification. In this paper, we present a systematic way to perform

functional testing using an advanced symbolic execution technique. Symbolic

execution is a very useful and powerful software engineering technique mainly

used in program analysis including test case generation. Often a single sym-

bolic execution of a program may represent a large number of normal test runs.

For example, consider the following register transfer level statement:

IF RA(l5)=O then RB--RC else RD*-RC

which means: if bit 15 of register A is equal to binary 0, then transfer

the content of register C to register B, otherwise do the same action from C

to D. When we symbolically execute this statement, we may only specify the value of

bit RA(15) (leaving other bits as "don't cares") to activate one of the two

branches. This actually means that all input cases with bit RA(15) set to a

specified value (either 0 or 1) and other bits, RA (0) to RA (14), unspecified

are covered in o,e symbolic run of the statement. Note that if an actual value

15
of RA is to be used, then there are potentially 2 choices to make!

Most digital systems including complex VLSI devices can be functionally des-

cribed by the standard Register Transfer Language (RTL). By applying symbolic

execution to the RTL description of digital systems, one can systematically

derive efficient input test data with fault coverage dependent on the precision

of the functional fault model used. The application of symbolic execution in a

RTL program is easier than its application in higher level programming languages,

since many complicated situations specific in high level languages will never

occur in a RTL program. This is because the syntax structure of a RTL statement

is usually much simpler than that of a high level language statement.
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This technique can be applied in test generation and/or design verifica-

tion of general digital systems both when the implementation is known and

unknown. In the latter case, a RTL program for describing the behavior of a

digital system can be derived based on user accessible information such as data

book and application notes. Certain inevitable assumptions (and hence func-

tional redundancies) such as the internal logic paths connections, functional

separation of internal parallism, or functional derivation of control circuit

timing, may be made in this case.

The basic requirement for performing symbolic execution is the RTL des-

cription of a digital system under test and a set of functional faults derived

from RTL statements. The preprocessing of a RTL program is first performed to

partition the RTL program into basic modules, to set up test order among

modules, and to collect other control information for subsequent symbolic execu-

tion. Each RTL module is tested in the sequence decided by the test order

obtained in preprocessing. Each fault-free functional module is symbolically

executed once to set up its symbolic execution tree. The input test pattern for

a set of testable faults (eg., register content stuck-at-fault) are derived

first. Then each remaining functional fault derived from RTL fault model is

enumerated and injected into the good machine. Symbolic execution is then per-

formed to produce the symbolic constraints for the faulty machine. An in-

equality solver is then used to derive precisely the set of test data for the

specified fault by performing an "exclusive OR" operation on the constraints

for the fault-free and fault-injected execution. More types of practical faults

can be considered and included in the RTL fault model.
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Since each symbolic execution run always generates all test patterns

for a given fault, near-optimal test set may be obtained during the iterative

symbolic executions. The symbolic execution of a RTL description of a digital

system may also point out design errors in the RTL level. For example, logic

designers may adjust their design if certain register transfer paths will never

be activated by all symbolic inputs or the symbolic execution produces unexpected

results with respect to certain inputs.
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CRITICAL PATH TEST GENERATION

AT REGISTER TRANSFER LANGUAGE LEVEL

Test generation algorithms at the gate level are not practical for VLSI

(very large scale inte-ration) circuits. Design for testability will not help

the testing of the existing off-the-shelf digital devices. Therefore, recent

effort has essentially been spending devoted in the test generation at higher

levels. These functional testing techniques not only reduce the test genera-

tion complexity, but also allow us to test VLSI without the need of knowing the

circuit implementation.

One kind of path sensitizing techniques is called critical path test genera-

tion which were first introduced in the LASAR system (1) and later developed at

the gate level (2-5). To increase the efficiency, this method attempts to find

a test pattern for detecting as many faults as possible instead of just a given

fault. Furthermore, a test pattern and the list of faults detected by the test

can be generated simultaneously. Therefore, fault simulation will not be required

(2). Recently, the critical path test generation approach has been extended to

high level systems (6, 7).

We propose a critical path test generation method for systems based on the

Register Transfer Language (RTL) descriptions. A fault model at the RTL level

is defined. There are three types of faults: data fault, control fault and

operation fault. The critical path approach attempts to use critical cubes of

elements to propagate the criticality of lines from prime outputs to prime inputs

(critical tracing). We extend the concept of critical cube from gate level to

the RTL level, and present three methods to construct critical cubes: truth table

method, Boolean difference method and Ad-hoc method.
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The critical path method mainly need two procedures: 
critical tracing and

implication. We will present some rules for these procedures. 
The key idea of

the critical tracing is to attempt single path sensitizing. We consider the

general use of multiple path sensitizing with reconvergent 
fan-outs.

We will also discuss how to find faults detected 
by a generated test.

Finally, we will present a critical path test generation 
algorithm and give an

example.
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